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ABSTRACT

The Short-Range Ensemble Forecast (SREF) system is verified and bias corrected for fire weather days

(FWDs) defined as having an elevated probability of wildfire occurrence using a statistical FireWeather Index

(FWI) over a subdomain of the northeastern United States (NEUS) between 2007 and 2014. The SREF is

compared to the RapidUpdate Cycle and Rapid Refresh analyses for temperature, relative humidity, specific

humidity, and the FWI. An additive bias correction is employed using the most recent previous 14 days

[sequential bias correction (SBC)] and the most recent previous 14 FWDs [conditional bias correction

(CBC)]. Synoptic weather regimes on FWDs are established using cluster analysis (CA) on North American

Regional Reanalysis sea level pressure, 850-hPa temperature, 500-hPa temperature, and 500-hPa

geopotential height. SREF severely underpredicts FWI (by two indices at FWI 5 3) on FWDs, which is

partially corrected using SBC and largely corrected with CBC. FWI underprediction is associated with a cool

(ensemble mean error of21.8K) and wet near-surface model bias (ensemble mean error of 0.46 g kg21) that

decreases to near zero above 800 hPa. Although CBC improves reliability and Brier skill scores on FWDs,

ensemble FWI values exhibit underdispersion. CA reveals three synoptic weather regimes on FWDs, with the

largest cool and wet biases associated with a departing surface low pressure system. These results suggest the

potential benefit of an operational analog bias correction on FWDs. Furthermore, CA may help elucidate

model error during certain synoptic weather regimes.

1. Introduction

Wildfires in the northeastern United States (NEUS)

burn an average of 13 633 acres annually (Pollina et al.

2013), which represents 0.27% of the total acres burned

by wildfires in the contiguous United States. However,

NEUS wildfires are often high impact phenomena be-

cause of the region’s high population density. Recent

examples of high-impact wildfires include the 7000 acre

Sunrise fire (August 1995, New York) that closed

a highway and stopped railroad service, effectively cut-

ting the Hamptons off from the rest of Long Island,

NewYork, for multiple days (McFadden 1995); the 1300

acre Double Trouble State Park wildfire (June 2002,

New Jersey) that forced the closure of the Garden State

Parkway at a high-volume traffic time and damaged or

destroyed 36 homes and outbuildings (Charney and

Keyser 2013); and the 2000 acreManorville event (April

2012, New York) that closed roads and railways and

destroyed 9 homes and outbuildings (Yan et al. 2012).

While the aforementioned events represent some of the

largest wildfire cases in the NEUS, even a small wildfire

(,100 acres) can be disruptive given the population den-

sity in the region.

Fire managers in the NEUS depend on fire weather

meteorologists to provide forecasts of the meteorologi-

cal parameters that are conducive to fire occurrence, and

they are particularly interested in weather forecasts on
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days that exhibit an elevated probability for fire oc-

currence. Fire weather meteorologists, in turn, de-

pend on numerical weather prediction (NWP) models

to provide information about the current and future state

of the atmosphere when preparing fire weather forecasts.

For example, the Storm Prediction Center routinely pro-

duces operational forecasts of several fire weather indices

using output from the Short-Range Ensemble Forecast

(SREF; Du et al. 2012) system.

However, fire weather meteorologists must use NWP

output cautiously because models can exhibit signifi-

cant near-surface biases in meteorological variables

relevant to fire weather applications. For example,

Simpson et al. (2014a,b) analyzed the Weather Re-

search and Forecasting (WRF) Model for the 2009/10

New Zealand fire season and reported negative 2-m

temperature mean error (ranging from 24.4 to 0.0K),

negative and positive 2-m relative humidity mean error

(ranging from 217.0% to 113.8%), positive 10-m wind

speed mean error (averaging 1.4ms21), and positive

precipitation mean error (averaging 0.35mmday21).

Erickson et al. (2012) compared the SREF and the

Stony Brook University NWP ensemble to climatology

in the NEUS and reported a 2-m temperature nega-

tive mean error (ensemble mean of 22.5 K) and 2-m

positive specific humidity mean error (ensemble mean

of 2.1 g kg21) on fire threat days. The modeled cool

and moist biases are greater on fire threat days than

the climatological average, contributing to an un-

derestimation of model-derived fire threat. Further-

more, Erickson et al. (2012) found a large removal of

mean error (averaging 22.45K for 2-m temperature)

is possible on fire threat days in the SREF and Stony

Brook University ensembles with postprocessing,

suggesting the possibility that model performance

may vary with the synoptic weather regime.

To evaluate model mean error on days with elevated

fire threat, a robust method is needed to effectively

capture and separate these anomalous days from the

climatological average. Case studies (e.g., Kaplan et al.

2008; Charney and Keyser 2010 for the NEUS) assess

model performance for a single event but typically do

not produce statistically significant results and are not

conducive to a more general assessment. Other studies,

such as Hoadley et al. (2004), Hoadley et al. (2006),

Mölders (2008), and Simpson et al. (2014a,b), have an-

alyzed and verified model performance for an entire fire

season. However, a fire season can vary greatly from

location to location and from dataset to dataset, and not

all days within a fire season are necessarily conducive to

the occurrence of a wildfire that requires a management

response. In the NEUS, this phenomenon can be par-

ticularly problematic because even during the most

active months of a fire season, only a small percentage of

days can be classified as fire occurrence days (Pollina

et al. 2013). Furthermore, days that experience meteo-

rological conditions conducive to the occurrence of a

large fire, but do not experience ignitions, are not rep-

resented in a fire weather occurrence database.

To isolate the meteorological conditions that are

conducive to fire ignition, Erickson et al. (2012)

defined a ‘‘fire threat day’’ by combining the fire po-

tential index from theWildland Fire Assessment System

(Burgan et al. 1998) with the National Fire Danger

Rating System (Deeming et al. 1972). However, the

Erickson et al. (2012) fire threat day definition is sub-

jective and difficult to apply to other applications since it

uses arbitrary thresholds from two uniquely different

and complex rating systems. To address this deficiency,

Erickson et al. (2016) employed a binomial logistic re-

gression model to establish that 2-m relative humidity

and 2-m temperature are the most effective statistical

predictors of wildfire occurrence in the NEUS. A sta-

tistical fire weather index (FWI) is developed from the

independent, skillful, and reliable predictions of wildfire

occurrence and compared to the seasonal climatological

probability of wildfire occurrence. Finally, the FWI

threshold is used to define a fire weather day (FWD) in

the NEUS as having a 30% or greater probability of

wildfire occurrence from the binomial logistic regression

model. The objective and straightforward characteristics

of the FWI make it ideal for exploring NWP model

performance on FWDs. It is important to note that the

FWI used in this study significantly differs from the

more complex FWI component within the Canadian

Forest Fire Weather Index System (Van Wagner 1987),

which considers the effects of fuel moisture, fire be-

havior, and meteorological conditions.

In this study, the FWI from Erickson et al. (2016) is

applied to define FWDs in theNEUS and investigate the

performance of an ensemble of NWPmodels. The goals

of this paper include 1) quantifying the difference in

ensemble model biases (i.e., vertically, horizontally, and

by model) on FWDs and non-FWDs verified against a

gridded analysis, 2) establishing the effectiveness of a

training period on bias correction of the model fields,

and 3) exploring how ensemble model biases vary with

synoptic flow regimes on FWDs.

The paper is organized as follows: section 2 details

how the FWI from Erickson et al. (2016) is applied to

gridded data, including a description of the gridded

analysis and ensemble model data. Results are pre-

sented in section 3, with comparisons of the gridded FWI

to the original FWI and verification and postprocessing

results for the FWI, temperature, and specific humidity.

Section 4 explores how model bias varies with regional
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atmospheric weather regimes using the FWI and section 5

concludes with a discussion of the results and future di-

rections for ensemble NWP research related to FWDs.

2. Data and methods

a. Gridded analysis and ensemble model datasets

The ensemble model data for this study originate from

the SREF system between 1April 2007 and 30 June 2014.

The SREF is run to forecast hour 87 four times daily

(0300, 0900, 1500, and 2100 UTC) by the National Cen-

ters for Environmental Prediction (NCEP). There have

been three major upgrades to the SREF in the period

studied here, as detailed below:

1) SREF2007: Run between 1 April 2007 and 26

October 2009 with four unique cores [3 Advanced

Research version of WRF (WRF-ARW), 3 WRF

Nonhydrostatic Mesoscale Model (WRF-NMM),

10 Eta Model, and 5 Regional Spectral Model (RSM)]

at 32–45-km grid spacing.

2) SREF2009: Run between 26 October 2009 and 21

August 2012 with four unique cores (5WRF-ARW, 5

WRF-NMM, 6 Eta Model, and 5 RSM) at 32–35-km

grid spacing.

3) SREF2012: Analyzed between 21 August 2012 and

30 June 2014 with three unique cores [7WRF-ARW,

7WRF-NMM, and 7WRF B-grid of the NMMmodel

(NMMB)] at 16-km grid spacing.

For additional details on the SREF physics and setup,

seeErickson et al. (2012; their Table 1) andDu et al. (2012;

slide 15). For simplicity, data from the SREF2007 and

SREF2009 are combined into one period since the number

ofmodel cores remains consistent even though the number

of members within each core changes. Although there are

some physics changes between SREF2007 and SREF2009

within some of themodel cores (particularlywithin theEta

model), these changes are assumed to have a minor effect

on the overall performance metrics of the members. The

specific model variables and levels analyzed are further

explained in section 2d.

The datasets employed in this study to evaluate the

SREF consist of hourly analyses from the Rapid Update

Cycle (RUC; Benjamin et al. 2004), the Rapid Refresh

(RAP; Benjamin et al. 2016), and the North American

Regional Reanalysis (NARR; Mesinger et al. 2006). The

RUC dataset is employed at 13-km grid spacing between

1 April 2007 and 1May 2012, and replaced by the RAP at

13-km grid spacing from 21 August 2012 to 30 June 2014.

While physics changes and upgrades have occurred within

the RUC and RAP periods (Weygandt et al. 2013), this

study assumes the impact of these changes to the analysis

field (i.e., model hour zero) is minor. The specific atmo-

spheric variables and levels examined in this study are

described in sections 2c–e.

b. The fire weather index

This study uses the FWI developed in Erickson et al.

(2016), which is based on a binomial logistic regression

model with the predictor being the probability of fire

occurrence and the predictands consisting of 2-m tem-

perature and 2-m relative humidity. The functional form

for the binomial logistic regression model is

ln

�
p
i

12 p
i

�
5b

0
1 b

1
TEMP

i
1 b

2
RELH, (1)

where p is the probability of a wildfire occurring in the

domain, i is each data sample, TEMP is the daily max-

imum of hourly 2-m temperature, RELH is the daily

minimum of hourly 2-m relative humidity, and the three

b are the regression coefficients. The binomial logis-

tic regression model produces independent reliable

probabilistic values of wildfire occurrence within a

subdomain of the NEUS using Automated Surface

Observing System (ASOS) station data.

Erickson et al. (2016) establish categories for the FWI

based on thresholds of wildfire occurrence probabili-

ties: less than 30% is assigned a value of zero, between

30% and 40% is assigned a value of one, 40% and 50%

is given a value of two, and greater than 50% being

given a value of three. For this study, all days with an

FWI greater than zero are considered to be an FWD,

which provides a large sample size of days while still

analyzing events with a statistically elevated probability

of fire occurrence. Since the FWI in Erickson et al.

(2016) is developed using standardized anomalies of

point observations, consideration must be given to how

the gridded data should be standardized.

c. Developing a climatology for the gridded FWI

To perform a regression analysis, the gridded data

must be standardized using a suitably long archive of the

gridded mean and standard deviation (std dev) for

temperature and relative humidity at each grid point. In

other words, the RUC/RAP anomaly must be refer-

enced to its own internal climate (Hamill et al. 2013),

which is likely to exhibit different biases than in situ

observations and other analyses. What constitutes a

‘‘suitably long’’ climatology is somewhat subjective, and

it is possible that the 7-yr archive of theRUC/RAP is too

short compared to a more typical 30-yr climatology used

by the National Weather Service (NWS). Therefore, the

shorter RUC/RAP analysis and the longer NARR

analysis climatologies are compared.
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Although NARR mean errors for the near-surface

have been evaluated (Mesinger et al. 2006), they have

not been studied on a subset of FWDs. Differences are

calculated between the RUC/RAP and NARR for 2-m

relative humidity and 2-m temperature during the over-

lapping periods of 2007–14. The mean relative humidity

within the NARR is considerably higher than in the

RUC/RAP (averaging 10%–15%), particularly with rel-

ative humidity values below 40% (not shown). This

conditional positive relative humidity mean error in the

NARR climatology would result in spuriously low FWI

values. Based on this analysis, the NARR is an in-

appropriate climatological dataset for the near-surface

variables, particularly for FWDs with low relative hu-

midity values. Not all variables within the NARR re-

analysis may be inappropriate to study fire weather

applications, but caution should be used when analyzing

near-surface variables, particularly moisture. While the

RUC/RAPmay not be themost conventional choice, it is

deemed the most appropriate for this study given the

NARR is biased with respect to the RUC/RAP for the

variables analyzed. Ideally, this analysis should be re-

visited as additional years of RUC/RAP analyses become

available to verify that the results presented here are not

biased by the short duration of the climatology.

Before evaluating the FWI based on the gridded

RUC/RAP climatology, the consistency of the gridded

FWI is compared to the FWI using point values from

ASOS observations, as in Erickson et al. (2016). The

ASOS stations from 40.58 to 428N and274.58 to271.58W
(Fig. 1) are used, which is consistent with domain 1 from

Erickson et al. (2016; their Fig. 1). The binomial logistic

regression model parameters are assumed to be spatially

invariant and hence are applied to all points in the model

grid and at each observation location. This assumption is

based on the minor variations in parameter estimates

between the mid-Atlantic and New York City domain

found in Erickson et al. (2016), and the minor spatial

variations in parameter estimations found within each

domain (not shown). Although this assumption is not

likely to hold over larger areas, this study assumes it is

acceptable within the NEUS subdomain.

The same binomial logistic regression model used in

Erickson et al. (2016) is applied here point-by-point over

the domain in Fig. 1, resulting in one 2-m temperature

and one 2-m relative humidity input for each point in the

model domain. A spatial median of FWI is computed for

all Fig. 1 points to determine the final probability of fire

occurrence. The domain representative FWI is auto-

matically set to zero if snow cover is present anywhere

within the domain. The presence of snow cover is de-

termined from the Multisensor Snow and Ice Mapping

System (IMS) Northern Hemisphere Snow and Ice

Analysis (National Snow and Ice Data Center 2008) to

find and exclude these days.

d. Ensemble verification and postprocessing

Verification of the SREF on FWDs is separated into

two unique periods based on the data availability of the

RUC and RAP. SREF1 consists of the SREF2007 and

SREF2009 between 1 April 2007 and 1 May 2012 veri-

fied with the RUC analysis. SREF2 consists of the

SREF2012 between 21 August 2012 and 30 June 2014

verified using the RAP analysis. The time period be-

tween 2 May 2012 and 20 August 2012 is not considered

to keep the newer (older) SREF version verification

consistent with the RAP (RUC) analysis.

To calculate the FWI, the daily maximum 2-m tem-

perature and daily minimum 2-m relative humidity are

obtained for each SREF member’s day 1 to day 3 fore-

casts initialized at 0900 UTC, and then averaged. For

these calculations, a day is defined as the time span from

0000 to 2300UTC, but all maximumFWI values used for

this analysis occur between 1200 and 2300 UTC. All

RUC/RAP analyses are bilinearly interpolated to the

SREF grid before verification or calculation of the FWI.

The ensemble analyses are verified against the

RUC/RAP analysis by analyzing systematic bias and

nonsystematic error metrics for all FWDs. In this case, an

FWD is defined as having an FWI of greater than zero in

either the RUC analysis or SREF forecast. In addition,

meteorological variables important to fire weather are

assessed for FWDs to quantify the three-dimensional

structure of the bias. Ensemble model biases and error

for each SREF core are assessed by calculating mean

error (ME) or mean absolute error (MAE) by threshold

(Wilks 2011). Reliability plots (Wilks 2011) comparing

the average observed probability for select forecast

probability bins are produced for several thresholds.

Brier skill scores (BSS; Wilks 2011) are calculated to

FIG. 1. Domain used (red box) and ASOS stations used for de-

veloping the grid-based FWI.
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explore the skill of the ensemble probabilities relative to

some other reference, which will be elaborated in

section 3e.

A bias correction is applied and evaluated for the

SREF ensemble using a spatially variant additive ap-

proach (Wilson et al. 2007; Erickson et al. 2012). The

additive approach to bias correction generally performs

best for normally distributed variables such as tempera-

ture and dailyminimum relative humidity.As inErickson

et al. (2012), two types of postprocessing are explored:

one with sequential bias correction (SBC; uses the pre-

vious 14 days to train the bias correction) and another

with conditional bias correction (CBC; uses 14 previous

FWDs to correct future FWDs). For the purposes of this

study, SBC can be thought of as a typical bias-correction

approach, while CBC is similar to a simple analog bias

correction. When the FWI is being verified with CBC

or SBC, relative humidity and temperature are post-

processed before the index is calculated.

Training and verification periods are created by boot-

strapping (Wilks 2011) the original dataset with re-

placement 1000 times to reconstruct a new dataset with

the same number of FWD events as the original dataset.

The purpose of the bootstrapping methodology is to as-

sess statistical significance by gathering multiple data

samples. In the case of the CBC data, all FWDs are

simply resampled, which rearranges the chronological

order of the original data. In the case of SBC, the FWDs

are resampled but the chronological order of the previous

14 days (which may or may not be an FWD) are pre-

served. The training and verification windows are always

independent with postprocessing being applied using a

sliding window approach (i.e., iteratively advancing the

training window one day forward after verification). All

results with the raw, SBC, and CBC contain data in the

independent verification window only. Error bars in all

plots represent the 25th and 975th permillile of the re-

sampled dataset. All references to ‘‘statistically signifi-

cant’’ or ‘‘significant’’ indicate confidence exceeding the

95% threshold using the bootstrapped datasets.

e. Using cluster analysis to explore regime-based
model mean error on FWDs

Cluster analysis (CA) is a common method for sepa-

rating events associated with different synoptic weather

regimes (Huth et al. 2008). Typically, principal compo-

nent analysis (PCA) is applied before CA to reduce the

dimensionality of the data (Huth et al. 2008). This study

applies T-mode (Wilks 2011) PCA separately to the 1800

UTC NARR standardized sea level pressure (SLP),

850-hPa temperature, 500-hPa temperature, and 500-hPa

geopotential height on all FWDs. The 1800 UTC time

period is selected since this is when model near-surface

temperature and specific humidity mean error is maxi-

mized (not shown).Although it was previously found that

theNARRexhibits greater near-surface temperature and

relative humidity mean error compared to the RUC

(section 2b), mean error reduces to near zero above the

PBL (not shown) and is not expected to significantly

impact SLP or variables above 850hPa.

The NARR is selected for CA since it has a larger

domain size than the RUC and RAP. Although a

smaller domain size is presented in this study, the sen-

sitivity of CA to larger domain sizes has been explored

(not shown). The domain presented here spans from 328
to 488N latitude and 828 to 688W longitude (see domain

in Fig. 14). This region captures the ambient atmosphere

surrounding the NEUS while excluding the more vari-

able synoptic details upstream and downstream of the

region. Loadings that explain 90% of the variance are

retained and included as separate variables for the CA,

resulting in five SLP loadings, three 850-hPa tempera-

ture loadings, three 500-hPa temperature loadings, and

three 500-hPa geopotential height loadings. A Varimax

(Wilks 2011) orthogonal rotation is applied to facilitate

interpretation. Thereafter, a k-means clustering (Lloyd

1982) on the retained PCs is used to minimize the dis-

tance between each object and the cluster centroid over

all clusters. Since the optimal total number of clusters is

not known a priori with k-means clustering, the optimal

number of clusters is selected bymaximizing the average

silhouette value (Rousseeuw and Leroy 1987), which is a

common measure of intracluster similarity and in-

tercluster dissimilarity among all the points. Model

performance in terms of ME is explored and compared

for each cluster. The relationships between the datasets

(model and analysis data), statistical procedures (bias

correction, binomial logistic regression, and cluster

analysis), and SREF verification presented in sections

2d and 2e are shown in Fig. 2.

3. Results

a. Creating a gridded statistical FWI

When developing an FWI climatology using the

RUC/RAP analyses, the RUC/RAP climatological distri-

butions of temperature and relative humidity must be

compared to ASOS observations (as in Erickson et al.

2016), to assess whether the effects of model cores, model

physics, and data assimilation affect the FWI at initializa-

tion (Weygandt et al. 2013). To investigate these effects,

four RUC/RAP FWI climatologies are produced using

different methodologies, and each is compared to the

ASOS-based FWI climatology. The first climatology

uses only the RUC to normalize the RUC/RAP data
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(RUC_ALL), the second uses theRAP for the RUC/RAP

data (RAP_ALL), the third uses the combinedRUC/RAP

climatology for the entire period (RR_ALL), and the

fourth applies the RUC and RAP normalization to the

RUC and RAP periods separately (RR_SEP).

The four RUC/RAP FWI climatologies are compared

to the ASOS FWI climatology for all thresholds using

ME (Fig. 3a) and MAE (Fig. 3b) metrics. An under-

prediction of the gridded FWI is apparent for most

thresholds using RUC_ALL (ME520.01 at FWI$ 1),

FIG. 2. Flowchart demonstrating the datasets, statistical techniques, and relationships be-

tween them in analyzing the SREF members. Ovals represent datasets while rectangles rep-

resent statistical techniques. Green indicates analysis data, red is model data, and purple is

verification output.
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RAP_ALL (ME 5 20.74 at FWI $ 1), RR_ALL

(ME 5 20.23 at FWI $ 1), and RR_SEP (ME 5 20.25

at FWI $ 1). In addition, RAP_ALL has statistically

significantly lower ME (difference averaging 0.57 at

FWI$ 1) and greater MAE (difference averaging 0.25 at

FWI$ 1) than the other climatologies. RUC_ALL has a

better ME than all other methodologies for FWI $ 1. In

terms of MAE, RUC_ALL, RR_ALL, and RR_SEP are

not significantly different from each other in the re-

sampled datasets at any FWI threshold. Although the

gridded FWI exhibits an underprediction compared to

ASOS FWI, all the climatologies perform equally well,

with the exception of RAP_ALL. The gridded FWI ex-

hibits skill in identifying FWDs, which suggests the FWI

can be used to investigate the three-dimensional structure

of model error using the gridded analyses. Given that all

climatologies except RAP_ALL perform well, separating

the RUC and RAP climatologies makes the most intuitive

sense. Hence, RR_SEP is selected as the default clima-

tology for normalizing the gridded FWI in this study.

FIG. 3. (a) ME and (b) MAE for RUC/RAP-derived FWI compared to ASOS stations–

derived FWI usingRUC climatology (RUC_ALL; blue), RAP climatology (RAP_ALL; cyan),

RUC and RAP combined climatology (RR_ALL; yellow), and RUC climatology for the RUC

analysis and RAP climatology for the RAP analysis (RR_SEP; red). Error bars represent the

25th and 975th permillile of the 1000 resampled datasets.

FIG. 4. Spatial (a)–(c) ME and (d)–(f) MAE for RUC/RAP-based FWI compared to ASOS-based FWI by threshold.
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To evaluate spatial consistency with the surface ob-

servations, the gridded FWI is interpolated to each

ASOS station and compared to the ASOS FWI using

ME andMAE scores (Fig. 4). As discussed in section 2c,

the final gridded FWI is derived from the spatial median

of the output from the binomial logistic regression

model. However, for the spatial comparisons discussed

here, the final step of computing the spatial median is

skipped.ME values at FWI$ 1 are close to zero with the

exception of KNYC (Fig. 1; Central Park, New York;

ME 5 0.94) and KISP (Islip, New York; ME 5 0.63).

KNYC has considerably more data missing (75%)

compared to the average station (averaging 19.4%),

which might affect the results, while KISP may be

influenced by representativeness errors given the bi-

linear interpolation of land and water points near the

coast. In general, coastal boundary representativeness

errors produces ME values for many coastal locations

(KFOK, KHWV, KISP, KFRG, KJFK, KLGA, and

KHPN in New York; KBDR, KHVN, and KGON in

Connecticut) that are substantially higher than ME

values at inland locations (KBDL, KHFD, KIJD,

KMMK, and KDXR in Connecticut; KEWR, KTEB,

and KCDW in New Jersey) at FWI $ 1 (difference av-

eraging 0.18). However, the effect of the representa-

tiveness errors on the mean error of the gridded FWI

(i.e., Fig. 3a) is relatively small when averaged over the

domain, which is consistent with the ASOS FWI.

Figure 5 compares the average number of FWDs per

year for the RUC/RAP analysis andASOS observations

stacked by FWI. The FWI climatologies are qualita-

tively similar, with a primary peak in April and a smaller

secondary peak in July. However, the gridded FWI cli-

matology identifies fewer FWDs than the ASOS FWI,

particularly in March, which is consistent with the

overall analysis presented in Fig. 3. Figure 5 emphasizes

the rarity of an FWI5 3 event, which occurs on average

4.3 days yr21 using the RUC/RAP analysis. Since the

gridded and ASOS FWI climatologies are comparable,

the gridded technique is considered suitable for identi-

fying FWDs in the SREF and RUC/RAP analysis. It is

apparent that FWDs are still being selected with the

gridded approach, albeit less frequently than the ASOS

FWI. The differences between gridded and ASOS FWI

could be caused by minor nonnormal deviations in the

distribution of the RUC/RAP climatology compared to

ASOS observations that are not corrected through

normalization.

b. Ensemble mean verification and bias correction of
SREF-derived FWI

ME is computed for all FWI thresholds and averaged

across all model cores for the SREF1 and SREF2 (Fig. 6).

For an FWI $ 1, the values are underpredicted for the

SREF1 (ME 5 21.29) and SREF2 (ME 5 21.34). This

underprediction generally grows with FWI value (e.g.,

SREF1 has an average value of 22.00 and SREF2 an

average value of 22.73 for FWI5 3). Ensemble average

ME at FWI $ 1 is substantially improved with SREF1

SBC (ME 5 20.70) and SREF2 SBC (ME 5 20.56) for

all SREF cores. There is additional improvement at

FWI $ 1 for SREF1 CBC (ME 5 20.02) and SREF2

CBC (ME 5 0.02). However, in most cases the CBC

overcorrects the mean error at FWI5 3, with the SREF1

CBC averaging 0.56 and SREF2 CBC averaging 0.78. The

performance of the CBC-based FWI suggests that near-

surface atmospheric biases differ significantly for FWDs

compared to the annual average.

Figure 7 shows MAE for all FWI thresholds averaged

across the ensemble cores. MAE is significantly reduced

compared to raw data for the SREF1 SBC (improvement

averaging 0.42) and SREF2 SBC (improvement averag-

ing 0.51) at an FWI$ 1.However, CBC does not result in

any statistically significant improvements over SBC for

any thresholds analyzed. This suggests that although

postprocessing is generally effective at removing mean

error, there is still considerable day-to-day variability that

is difficult to correct with CBC. The performance of in-

dividual SREF cores is discussed in section 3d.

Figure 7 can also be used to compare improvements in

ensemble performance associated with model upgrades.

For instance, the 2012 SREF upgrade (i.e., SREF2)

invoked a newer WRF version (from version 2.2 to

FIG. 5. FWI average days per year by index value (blue, green,

and red for FWI values of 1, 2, and 3, respectively) grouped by

ASOS stations (left bars) andRUC/RAP (right bars) between 2007

and 2014.
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version 3.3), increased the model resolution (from ;32

to 16km), added the NMMB core, removed the RSM

and Eta cores, and increased the physics and initial

condition diversity (Du et al. 2012). The raw MAE is

statistically significantly worse in SREF2 compared to

SREF1 for all thresholds except FWI5 1. SBC andCBC

bias correction improves upon the MAE, with no sig-

nificant differences between the SREF1 and SREF2.

The potential sources of this bias are explored in

sections 3c and 3d by analyzing the model variables that

went into the FWI. Note that the slightly larger error

bars for the SREF2 is related to the limited training

period available (total of 86 FWDs), compared to

SREF1 (total of 235 FWDs). The differences between

SREF1 and SREF2 emphasize the importance of re-

training the statistical methods employed in this paper

after model upgrades.

Spatial ensemble ME and MAE are shown for the

SREF1 and SREF2 at FWI $ 1 after CBC is applied

(Fig. 8). The ensemble mean still exhibits significant

spatial variability for bothME andMAE despite the use

of a spatially additive bias correction. For instance,

spatial MAE values range from 0.74 to 1.21 in SREF1

and from 0.68 to 1.22 in SREF2. ME values are more

negative over the Long Island Sound and in the New

York Bight region for SREF1 and SREF2, which de-

grades the MAE for these locations. This contrast along

the coast could be associated with representativeness

errors between the higher resolution RUC/RAP analy-

sis and coarser SREF model grid. For instance, relative

humidity and temperature differences between ocean

and atmosphere during FWDs can be as large as 70%

and 20K, respectively (not shown).

c. Ensemble mean verification and bias correction of
SREF temperature and specific humidity

From section 3b, raw SREF model output exhibits a

large underprediction of FWI, particularly for the

SREF2. Therefore, it is important to understand how

model biases in temperature and specific humidity affect

the FWI and explore model performance for additional

meteorological variables of interest to the fire weather

community. The vertical profile of ensemble mean tem-

perature ME is shown for the raw, SBC, and CBC in

Fig. 9. Temperature exhibits a significant cool mean error

maximized at 1000hPa for SREF1 (averaging 22.41K)

and SREF2 (averaging 21.30K) that decays to a ME

near zero above 800hPa. ME is significantly improved

compared to the raw temperature for SREF1 (SREF2)

SBC below 825hPa (925hPa). Likewise, CBC signifi-

cantly improves on ME over SBC in both ensembles

below 850hPa. In contrast to the FWI results from Fig. 6,

the upgraded SREF2 statistically significantly improves

rawME below 700hPa (by 1.21K at 1000hPa) compared

to the SREF1. This benefit is also apparent after SBC,

where the SREF2 exhibits significantly less mean error

below 850hPa compared to the SREF1.

The ensemble mean vertical structure of SREF MAE

is analyzed for the SREF1 and SREF2 (Fig. 10). SREF1

SBC results in a significant improvement below 875hPa

compared to the raw data (at 1000hPa averaging

1.07K). However, SREF2 SBC only yields statistically

significant improvement below 925hPa, suggesting that

bias correction is less impactful in this case for the newer

version. Similar to Fig. 9, the raw SREF2 exhibits sig-

nificantly lower MAE than the raw SREF1 below

850hPa.

FIG. 7. As in Fig. 6, but for MAE.

FIG. 6. SREF ensemble-mean-based raw (red), SBC (green), and

CBC (blue)ME by FWI threshold for (a) the SREF between 1Apr

2007 and 1 May 2012 (SREF1) and (b) the SREF between 21 Aug

2012 and 30 Jun 2014 (SREF2). Error bars represent the 25th and

975th permillile of the 1000 resampled datasets.
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Aswith temperature, specific humidity has a statistically

significant positive moisture mean error for the SREF1

(SREF2) raw data below 825hPa (875hPa) that is maxi-

mized at 975hPa (1000hPa) for the ensemble mean

(Fig. 11). SREF1 (SREF2) SBC significantly improvesME

below 850hPa (900hPa) with additional significant im-

provements for CBC below 875hPa (975hPa). The SREF

upgrade in 2012 significantly improves the high biased raw

specific humidity forecasts between 850 and 975hPa.

Overall, the underprediction of FWI in the raw SREF

model data is associated with large negative tempera-

ture (Fig. 9) and positive specific humidity (Fig. 11)

biases that generally occur below 875hPa. The result is a

relative humidity mean error of greater than 10% below

875hPa (950 hPa) in SREF1 (SREF2; not shown). Bias

correction can effectively remove these PBL biases and

marginally improve model error metrics like MAE.

d. Performance of individual SREF cores on FWDs

SREF performance among the model cores is analyzed

for ME at FWI 5 1, 2-m temperature, and 2-m specific

humidity (Fig. 12). Two-meter temperature raw ME is

significantly more negative for the SREF1 within the

WRF-ARW and RSM cores. Likewise, 2-m specific hu-

midity ME is significantly greater within the Eta and RSM

cores. The effect of these biases is apparent on the raw

FWI values, with the WRF-NMM performing the best

(raw ME 5 0.8) and the RSM performing the worst (raw

ME 5 1.4). Raw ME is more consistent across each core

for all variables analyzed within SREF2. There are no

significant differences in raw ME between any of the

SREF2 averaged cores. Except for SREF1 WRF-ARW,

SREF1 WRF-NMM, and SREF1 RSM specific humidity,

SBC significantly improves ME over the raw values. In all

instances, CBC improves upon SBC values of ME.

There is an inconsistency between the lower atmo-

sphere (1000hPa) improvement in raw SREF2 temper-

ature (Fig. 9) and specific humidity (Fig. 11) compared to

SREF1, and the more negatively biased FWI forecasts at

the near-surface for SREF2 (Fig. 6b) versus SREF1

(Fig. 6a). Since near-surface variables are used to com-

pute the FWI rather than 1000-hPa values, Fig. 12 pro-

vides perspective into the degraded raw FWI values in

Fig. 6. Examining differences in the model upgrade,

SREF2 raw 2-m temperature mean error has a statisti-

cally significant improvement in the WRF-ARW (0.7K)

with little change in the WRF-NMM performance.

However, there is a statistically significant increase in

SREF2 2-m specific humidity mean error for the WRF-

ARW (by 0.56gkg21) and WRF-NMM (by 0.44 gkg21)

when compared to the SREF1. This large positive

2-m specific humidity mean error in SREF2 negatively

FIG. 8. Ensemble-mean-derived spatial (a) SREF1 ME, (b) SREF2 ME, (c) SREF1 MAE, and (d) SREF2 MAE

after applying CBC for the FWI $ 1.
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impacts the raw FWI and emphasizes the importance of

careful postprocessing, even when ensembles experience

critical upgrades. Since this increase in SREF2 specific

humidity mean error is not found at 1000hPa, there may

be issues within the PBL scheme or land surface model

when interpolating the lowest model sigma level to the

near surface for the SREF2 WRF cores.

e. Probabilistic SREF verification of the FWI

Figure 13 shows the SREF1 and SREF2 ensemble

reliability (section 2d) at FWI $ 2 for raw (red), SBC

(green), and CBC (blue). Raw ensemble FWI is under-

predicted, with the SREF2 never predicting raw FWI

probabilities greater than 10%. Bias correction im-

proves this mean error, particularly with CBC, which is

consistent with section 3b. However, low (high) CBC-

derived FWI probabilities verify too low (high) com-

pared to observations, especially for SREF2 CBC.

BSSs (Wilks et al. 2011) are used to compare the

probabilistic accuracy of the SBC and CBC FWI with

raw FWI as the reference (Fig. 14). The BSS is statisti-

cally significantly greater than zero for FWI $1 and

FWI $ 2, indicating that the probabilistic accuracy of

both bias corrections improves upon the raw model

despite the ensemble underdispersion (Fig. 13). In ad-

dition, both bias-correction methods exhibit average

BSS . 0 at FWI $ 3, although this result is not statis-

tically significant. Compared to SBC, CBC significantly

improves upon BSS at FWI $ 1, but does not signifi-

cantly change BSS at higher thresholds.

4. Sensitivity of model bias to cluster analysis on
FWDs

As described in section 2e, the optimal number of CA

clusters is three for temperature by using the silhouette

FIG. 9. ME-derived SREF ensemble mean temperature profiles of raw (red), SBC (green), and CBC (blue) for

(a) SREF1 and (b) SREF2. Error bars represent the 25th and 975th permillile of the 1000 resampled datasets.
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technique (Rousseeuw and Leroy 1987). To examine the

regional characteristics of each cluster, the composite of

each cluster’s 500-hPa height anomaly and SLP anomaly

is shown in Fig. 15. Since some events do not fit clearly

into any assigned cluster, all days with a silhouette value

below 0.1 are excluded from the composite. Cluster 1

appears to be associated with a departing surface low

pressure system and advancing surface high pressure

system from Canada. This weather regime is similar to

the ‘‘pre-high’’ regime from Pollina et al. (2013). Cluster

2 is associated with an advancing 500-hPa height ridge

from the west and a SLP maximum centered over the

region or to the south. This weather regime is a combi-

nation of the ‘‘extended high’’ and ‘‘high to the south’’

regimes from Pollina et al. (2013). The third cluster is

associated with a 500-hPa ridge and SLP maximum to

the southwest of the region, and is identical to the ‘‘back

of high’’ regime described in Pollina et al. (2013).

Cluster 1 is typically associated with cool and dry surface

conditions with a low-level northwest wind, while clus-

ters 2 and 3 typically have warmer surface conditions

with light and southwest low-level winds, respectively.

The ensemble mean 2-m temperature ME for all

FWDs are separated in boxplots by cluster for the

SREF1 and SREF2 raw and CBC (Fig. 16). Clusters 1

and 2 have a greater negative temperature mean error

than cluster 3 for both the raw SREF1 and SREF2.

Using a Kolmogorov–Smirnov (K-S; Wilks 2011) test at

95% confidence, the differences between cluster 3 and

clusters 1 and 2 are statistically significant for both raw

SREF1 and SREF2. This is also true for relative hu-

midity (not shown), where cluster 3 exhibits significantly

smaller positive moisture mean error than clusters 1 and

2. These statistically significant differences in model

FIG. 10. As in Fig. 9, but for temperature MAE.
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mean error between clusters remain even after CBC is

applied.

Model mean error by FWI strength and cluster is

presented for the SREF1 and SREF2 raw and CBC

(Fig. 17) temperature fields. Model mean error for

temperature appears to be dependent on both cluster

and FWI strength. For instance, FWDs with a higher

FWI generally have a colder model mean error. CBC is

not completely effective at removing model mean error

conditional on cluster or FWI for either the SREF1

(Fig. 17b) or SREF2 (Fig. 17d), suggesting that there is

potential to improve the additive bias correction with

intelligent subsetting of FWDs combined with thresh-

olding techniques.

5. Conclusions

This study explores model error characteristics on fire

weather days (FWDs) by comparing the Short-Range

Ensemble Forecast (SREF) system to the RapidUpdate

Cycle (RUC) and Rapid Refresh (RAP) analyses. The

FireWeather Index (FWI) from Erickson et al. (2016) is

used to define a consistent and reliable quantification of

the atmospheric conditions that constitute an FWD.

The effectiveness of bias correction on FWDs is ex-

plored using the previous 14 days (sequential bias cor-

rection) and most recent 14 FWDs (conditional bias

correction). Mean error, mean absolute error, reliability

plots, and Brier skill scores are calculated on FWDs for

the SREF. Finally, cluster analysis (CA) is applied to

North American Regional Reanalysis (NARR) data on

FWDs to explore the relationship between regional flow

pattern and model error. An overview of the datasets,

statistical techniques, and relationships between them is

presented in Fig. 2.

SREF severely underpredicts FWI (mean error of 1.3

indices at FWI 5 1) on FWDs, which is partially cor-

rected with sequential bias correction (mean error of 0.5

FIG. 11. As in Fig. 9, but for specific humidity ME.
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indices at FWI 5 1) and largely corrected with condi-

tional bias correction. This is caused by a near-surface

cool (ensemble mean error of 21.8K) and wet (en-

semble mean error of 0.46 g kg21) bias. The cool tem-

perature mean error and effectiveness of conditional

bias correction are consistent with the findings from

Erickson et al. (2012; their Fig. 4). In terms of statistical

significance, sequential bias correction significantly

(defined as exceeding 95% confidence using statistical

bootstrapping) improves forecasts of the FWI. Addi-

tional significant improvement occurs with conditional

bias correction for FWI values less than 3.

FIG. 12. Raw (red), SBC (green), and CBC (blue) ME averaged by model core for the (a),(c),(e) SREF1 and

(b),(d),(f) SREF2 2-m temperature [in (a) and (b)], 2-m specific humidity [in (c) and (d)], and values of the FWI$ 1

[in (e) and (f)].
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Regarding the vertical structure of model bias, raw

temperature (specific humidity) mean error is more

negative (positive) near the surface, which gradu-

ally reduces to a mean error near zero above 700hPa.

Sequential bias correction significantly improves the

temperature and specific humidity mean error below

900hPa. Conditional bias correction is more effective at

improving mean error than sequential bias correction for

low-level temperature and specific humidity. Conditional

bias correction has a minor positive impact on mean ab-

solute error compared to sequential bias correction.

Overall, any bias-correction method is better than using

raw model data on FWDs. This is encouraging, since it is

straightforward in practice to implement sequential bias

correction when predicting FWDs, although conditional

bias correction is recommended. These results are similar

to the findings of Erickson et al. (2012) but extend veri-

fication above the surface, suggesting that the moist

model bias exists in later versions of both WRF cores,

regardless of the physics configurations, and propagates

upward throughout the PBL.

Variations in spatial mean error and mean absolute

error exist within the Northeast U.S. domain subset,

even after conditional bias correction is applied. For

instance, temperature mean error averages 0.07K away

from the coast and20.13K near the coastal plan. While

this may be related to representativeness errors associ-

ated with interpolation, a more complex spatially vary-

ing additive bias correction may be beneficial.

Furthermore, the ensemble exhibits differences in bia-

ses related to model core. For instance, raw 2-m temper-

ature WRF-ARW is significantly more negatively biased

(by 20.7K) than the WRF-NMM prior to 2012. The Eta

and RSM exhibit significantly greater 2-m specific hu-

midity mean error (averaging 0.30gkg21 ME) than the

WRF-ARW andWRF-NMM prior to 2012. There are no

significant differences between each of the cores of the

ensemble after 2012. The raw 2-m specific humidity biases

are significantly greater after 2012 compared to before

2012 (averaging 0.40gkg21), which increases the FWI raw

average bias (by 0.2 indices at FWI5 1). This degradation

occurs only at the surface, with a significant improvement

found after 2012 for specific humidity between 750 and

975hPa and for temperature between 825 and 1000hPa.

These results suggest that 2-m specific humidity values

should be used with caution in the latter SREF period.

SREF reliability plots for the FWI are underdispersed

even after bias correction, although probabilistic skill

increases with conditional bias correction. This ensemble

underdispersion is consistent with Erickson et al. (2012),

which used Bayesian model averaging (BMA; Raftery

et al. 2005) to inflate the ensemble predictions and im-

proved ensemble reliability on high fire risk days. Bayesian

FIG. 13. Average reliability for the raw (red), SBC (green), and CBC (blue) at FWI $ 2 using (a) SREF1 and

(b) SREF2. Black line shows the 1:1 probability between forecast and observation, numbers at the bottom of the

image show the sample size for each bin and error bars denote the 95% confidence intervals.

FIG. 14. Brier skill scores by FWI threshold for the SBC (green)

and CBC (blue) referenced against the raw values for (a) SREF1

and (b) SREF2. Error bars denote the 95% confidence intervals.
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model averaging could also be applied to the results in this

study, but would have to be adapted to gridded data

(Berrocal et al. 2007) beforehand.

Cluster analysis results suggest that the 1000-hPa

temperature model bias appears to be sensitive to the

regional weather regime, with less negative biases

during an FWD with a high pressure system centered

to the southeast of Long Island. This is similar to the

‘‘back of high’’ regime described in Pollina et al. (2013).

The magnitude of model bias also appears to increase as

the FWI value increases for the clusters analyzed.

Although the FWI should be used with caution outside

of the Northeast U.S. subdomain in this study, it could be

useful when applied in context with other more familiar

indices such as the National Fire Danger Rating System

and Canadian Forest Fire Danger Rating System. It is

important to note that the FWI values have a specific

statistical relationship to fire occurrence within the

Northeast U.S. subdomain, and this index can be readily

tuned to other domains where fire occurrence data are

available. A variant of the logistic regression employed

here can be used to isolate FWDs, and possibly even

wildfire size, during a fire season over more active regions

of the world. This would allow for conditional model

biases during FWDs to be isolated from the bulk model

biases presented in previous studies (e.g., Hoadley et al.

2004, 2006; Mölders 2008; Simpson et al. 2014a,b).

The results from this study present a general idea of

what a conditional bias correction could achieve opera-

tionally. Several improvements could bemade tomake the

bias correction more effective. The most obvious adjust-

ment is to bias correct each variable based on an optimized

threshold or cumulative distribution function (also known

as quantile matching) bias-correction method. The bias

correction could be adapted to consider additional condi-

tional model biases such as season and month, which do

exist but are not presented in this study.

Given the intercluster variability in model bias, the

cluster analysis technique can be used to develop an op-

erational FWD analog bias correction. While this bias-

correction approach would be of great benefit to the fire

weather community, it would require several years of

model data for training, preferably from an up-to-date

reforecast. The analog bias correction would require two

steps: first, determine if an upcoming day appears to be

an FWD; second, assign the upcoming FWD into the

proper weather regime. The first step can be as simple as

applying a binomial threshold (i.e., if temperature and

FIG. 15. Composites by cluster for (a)–(c) sea level pressure and (d)–(f) 500-hPa height anomaly over the NEUS. Note that events having

an intracluster silhouette value of greater than 0.1 are retained for the composites.
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FIG. 16. Box-and-whisker plots of temperature ME by cluster for (a) SREF1 raw, (b) SREF1

CBC, (c) SREF2 raw, and (d) SREF2 CBC (d). The red line denotes the median, the box edges

denote the 25th/75th percentiles, and the tails denote all points not considered outliers. Numbers

at the bottom of each subplot are the sample size of each bin.
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relative humidity reach a critical threshold), while the

second step would assign the upcoming FWD into the

proper weather regime using cluster analysis or a com-

bination of clustering techniques. Additional work would

be needed to independently verify the effectiveness of an

operational analog technique for FWDs.

Finally, the statistical techniques employed in this study

can be used to explore and reduce structural model error

within the parameterized model physics. It is possible that

some of the cool temperature and high specific humidity

mean error on FWDs is the result of a lack of evapo-

transpiration in the observed atmosphere before and dur-

ing the spring bloom. However, monthly biases are higher

on FWDs for all seasons (not shown). Furthermore, the

greater mean error with higher FWI value suggests an

amplification of model mean error occurring on the most

intense FWDs. The source of this bias is likely related to

the fluxes of heat and moisture from the ground to the

bottom layer of the atmosphere. Unfortunately, this could

be caused by many factors, including the land surface

model, planetary boundary layer scheme, soil moisture

biases, spurious cloud formation, and possibly nonlinear

combinations of one or more of these factors. Future work

should focus on optimizing the bottom boundary of the

model to isolate sources of potential biases. Data assimi-

lation could prove useful in exploring how rapidly model

biases grow on the most severe FWDs.
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